博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
三元表达式、列表推导式、生成器表达式、递归、匿名函数、内置函数
阅读量:5222 次
发布时间:2019-06-14

本文共 9869 字,大约阅读时间需要 32 分钟。

一 三元表达式、列表推导式、生成器表达式

一 三元表达式

name=input('姓名>>: ')res='SB' if name == 'alex' else 'NB'print(res)

二 列表推导式

#1、示例egg_list=[]for i in range(10):    egg_list.append('鸡蛋%s' %i)egg_list=['鸡蛋%s' %i for i in range(10)]#2、语法[expression for item1 in iterable1 if condition1for item2 in iterable2 if condition2...for itemN in iterableN if conditionN]类似于res=[]for item1 in iterable1:    if condition1:        for item2 in iterable2:            if condition2                ...                for itemN in iterableN:                    if conditionN:                        res.append(expression)#3、优点:方便,改变了编程习惯,可称之为声明式编程

三 生成器表达式

#1、把列表推导式的[]换成()就是生成器表达式#2、示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性>>> chicken=('鸡蛋%s' %i for i in range(5))>>> chicken
at 0x10143f200>>>> next(chicken)'鸡蛋0'>>> list(chicken) #因chicken可迭代,因而可以转成列表['鸡蛋1', '鸡蛋2', '鸡蛋3', '鸡蛋4',]#3、优点:省内存,一次只产生一个值在内存中

四 声明式编程练习题

1、将names=['egon','alex_sb','wupeiqi','yuanhao']中的名字全部变大写

2、将names=['egon','alex_sb','wupeiqi','yuanhao']中以sb结尾的名字过滤掉,然后保存剩下的名字长度

3、求文件a.txt中最长的行的长度(长度按字符个数算,需要使用max函数)

4、求文件a.txt中总共包含的字符个数?思考为何在第一次之后的n次sum求和得到的结果为0?(需要使用sum函数)

5、思考题

with open('a.txt') as f:    g=(len(line) for line in f)print(sum(g)) #为何报错?

6、文件shopping.txt内容如下

mac,20000,3lenovo,3000,10tesla,1000000,10chicken,200,1

求总共花了多少钱?

打印出所有商品的信息,格式为[{'name':'xxx','price':333,'count':3},...]

求单价大于10000的商品信息,格式同上

#题目一names=['egon','alex_sb','wupeiqi','yuanhao']names=[name.upper() for name in names]#题目二names=['egon','alex_sb','wupeiqi','yuanhao']names=[len(name) for name in names if not name.endswith('sb')]#题目三with open('a.txt',encoding='utf-8') as f:    print(max(len(line) for line in f))#题目四with open('a.txt', encoding='utf-8') as f:    print(sum(len(line) for line in f))    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?#题目五(略)#题目六:每次必须重新打开文件或seek到文件开头,因为迭代完一次就结束了with open('a.txt',encoding='utf-8') as f:    info=[line.split() for line in f]    cost=sum(float(unit_price)*int(count) for _,unit_price,count in info)    print(cost)with open('a.txt',encoding='utf-8') as f:    info=[{        'name': line.split()[0],        'price': float(line.split()[1]),        'count': int(line.split()[2]),    } for line in f]    print(info)with open('a.txt',encoding='utf-8') as f:    info=[{        'name': line.split()[0],        'price': float(line.split()[1]),        'count': int(line.split()[2]),    } for line in f if float(line.split()[1]) > 10000]    print(info)
View Code

二 递归与二分法

一 递归调用的定义

#递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用
#直接调用本身def f1():    print('from f1')    f1()f1()#间接调用本身def f1():    print('from f1')    f2()def f2():    print('from f2')    f1()f1()# 调用函数会产生局部的名称空间,占用内存,因为上述这种调用会无需调用本身,python解释器的内存管理机制为了防止其无限制占用内存,对函数的递归调用做了最大的层级限制四 可以修改递归最大深度import syssys.getrecursionlimit()sys.setrecursionlimit(2000)def f1(n):    print('from f1',n)    f1(n+1)f1(1)虽然可以设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归,而且无限制地递归调用本身是毫无意义的,递归应该分为两个明确的阶段,回溯与递推
详解

二 递归调用应该分为两个明确的阶段:递推,回溯 

#1、递归调用应该包含两个明确的阶段:回溯,递推    回溯就是从外向里一层一层递归调用下去,        回溯阶段必须要有一个明确地结束条件,每进入下一次递归时,问题的规模都应该有所减少(否则,单纯地重复调用自身是毫无意义的)    递推就是从里向外一层一层结束递归#2、示例+图解。。。# salary(5)=salary(4)+300# salary(4)=salary(3)+300# salary(3)=salary(2)+300# salary(2)=salary(1)+300# salary(1)=100## salary(n)=salary(n-1)+300     n>1# salary(1) =100                n=1def salary(n):    if n == 1:        return 100    return salary(n-1)+300print(salary(5)) 

三 python中的递归效率低且没有尾递归优化

#python中的递归python中的递归效率低,需要在进入下一次递归时保留当前的状态,在其他语言中可以有解决方法:尾递归优化,即在函数的最后一步(而非最后一行)调用自己,尾递归优化:http://egon09.blog.51cto.com/9161406/1842475但是python又没有尾递归,且对递归层级做了限制#总结递归的使用:1. 必须有一个明确的结束条件2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)

四 二分法

想从一个按照从小到大排列的数字列表中找到指定的数字,遍历的效率太低,用二分法(算法的一种,算法是解决问题的方法)可以极大低缩小问题规模

l=[1,2,10,30,33,99,101,200,301,311,402,403,500,900,1000] #从小到大排列的数字列表def search(n,l):    print(l)    if len(l) == 0:        print('not exists')        return    mid_index=len(l) // 2    if n > l[mid_index]:        #in the right        l=l[mid_index+1:]        search(n,l)    elif n < l[mid_index]:        #in the left        l=l[:mid_index]        search(n,l)    else:        print('find it')search(3,l)
实现类似于in的效果
l=[1,2,10,30,33,99,101,200,301,402]def search(num,l,start=0,stop=len(l)-1):    if start <= stop:        mid=start+(stop-start)//2        print('start:[%s] stop:[%s] mid:[%s] mid_val:[%s]' %(start,stop,mid,l[mid]))        if num > l[mid]:            start=mid+1        elif num < l[mid]:            stop=mid-1        else:            print('find it',mid)            return        search(num,l,start,stop)    else: #如果stop > start则意味着列表实际上已经全部切完,即切为空        print('not exists')        returnsearch(301,l)
实现类似于l.index(30)的效果

三 匿名函数

一 什么是匿名函数?

匿名就是没有名字def func(x,y,z=1):    return x+y+z匿名lambda x,y,z=1:x+y+z #与函数有相同的作用域,但是匿名意味着引用计数为0,使用一次就释放,除非让其有名字func=lambda x,y,z=1:x+y+z func(1,2,3)#让其有名字就没有意义

二 有名字的函数与匿名函数的对比

#有名函数与匿名函数的对比有名函数:循环使用,保存了名字,通过名字就可以重复引用函数功能匿名函数:一次性使用,随时随时定义应用:max,min,sorted,map,reduce,filter

四 内置函数

#注意:内置函数id()可以返回一个对象的身份,返回值为整数。这个整数通常对应与该对象在内存中的位置,但这与python的具体实现有关,不应该作为对身份的定义,即不够精准,最精准的还是以内存地址为准。is运算符用于比较两个对象的身份,等号比较两个对象的值,内置函数type()则返回一个对象的类型#更多内置函数:https://docs.python.org/3/library/functions.html?highlight=built#ascii

#字符串可以提供的参数 's' None>>> format('some string','s')'some string'>>> format('some string')'some string'#整形数值可以提供的参数有 'b' 'c' 'd' 'o' 'x' 'X' 'n' None>>> format(3,'b') #转换成二进制'11'>>> format(97,'c') #转换unicode成字符'a'>>> format(11,'d') #转换成10进制'11'>>> format(11,'o') #转换成8进制'13'>>> format(11,'x') #转换成16进制 小写字母表示'b'>>> format(11,'X') #转换成16进制 大写字母表示'B'>>> format(11,'n') #和d一样'11'>>> format(11) #默认和d一样'11'#浮点数可以提供的参数有 'e' 'E' 'f' 'F' 'g' 'G' 'n' '%' None>>> format(314159267,'e') #科学计数法,默认保留6位小数'3.141593e+08'>>> format(314159267,'0.2e') #科学计数法,指定保留2位小数'3.14e+08'>>> format(314159267,'0.2E') #科学计数法,指定保留2位小数,采用大写E表示'3.14E+08'>>> format(314159267,'f') #小数点计数法,默认保留6位小数'314159267.000000'>>> format(3.14159267000,'f') #小数点计数法,默认保留6位小数'3.141593'>>> format(3.14159267000,'0.8f') #小数点计数法,指定保留8位小数'3.14159267'>>> format(3.14159267000,'0.10f') #小数点计数法,指定保留10位小数'3.1415926700'>>> format(3.14e+1000000,'F')  #小数点计数法,无穷大转换成大小字母'INF'#g的格式化比较特殊,假设p为格式中指定的保留小数位数,先尝试采用科学计数法格式化,得到幂指数exp,如果-4<=exp
>> format(0.00003141566,'.1g') #p=1,exp=-5 ==》 -4<=exp
>> format(0.00003141566,'.2g') #p=1,exp=-5 ==》 -4<=exp
>> format(0.00003141566,'.3g') #p=1,exp=-5 ==》 -4<=exp
>> format(0.00003141566,'.3G') #p=1,exp=-5 ==》 -4<=exp
>> format(3.1415926777,'.1g') #p=1,exp=0 ==》 -4<=exp
>> format(3.1415926777,'.2g') #p=1,exp=0 ==》 -4<=exp
>> format(3.1415926777,'.3g') #p=1,exp=0 ==》 -4<=exp
>> format(0.00003141566,'.1n') #和g相同'3e-05'>>> format(0.00003141566,'.3n') #和g相同'3.14e-05'>>> format(0.00003141566) #和g相同'3.141566e-05'
format(了解即可)
字典的运算:最小值,最大值,排序salaries={    'egon':3000,    'alex':100000000,    'wupeiqi':10000,    'yuanhao':2000}迭代字典,取得是key,因而比较的是key的最大和最小值>>> max(salaries)'yuanhao'>>> min(salaries)'alex'可以取values,来比较>>> max(salaries.values())>>> min(salaries.values())但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键>>> max(salaries,key=lambda k:salary[k])'alex'>>> min(salaries,key=lambda k:salary[k])'yuanhao'也可以通过zip的方式实现salaries_and_names=zip(salaries.values(),salaries.keys())先比较值,值相同则比较键>>> max(salaries_and_names)(100000000, 'alex')salaries_and_names是迭代器,因而只能访问一次>>> min(salaries_and_names)Traceback (most recent call last):  File "
", line 1, in
ValueError: min() arg is an empty sequencesorted(iterable,key=None,reverse=False)
!!!lambda与内置函数结合使用!!!
#1、语法# eval(str,[,globasl[,locals]])# exec(str,[,globasl[,locals]])#2、区别#示例一:s='1+2+3'print(eval(s)) #eval用来执行表达式,并返回表达式执行的结果print(exec(s)) #exec用来执行语句,不会返回任何值'''6None'''#示例二:print(eval('1+2+x',{
'x':3},{
'x':30})) #返回33print(exec('1+2+x',{
'x':3},{
'x':30})) #返回None# print(eval('for i in range(10):print(i)')) #语法错误,eval不能执行表达式print(exec('for i in range(10):print(i)'))
eval与exec
compile(str,filename,kind)filename:用于追踪str来自于哪个文件,如果不想追踪就可以不定义kind可以是:single代表一条语句,exec代表一组语句,eval代表一个表达式s='for i in range(10):print(i)'code=compile(s,'','exec')exec(code)s='1+2+3'code=compile(s,'','eval')eval(code)
complie(了解即可)

五 阶段性练习

1、文件内容如下,标题为:姓名,性别,年纪,薪资

egon male 18 3000

alex male 38 30000
wupeiqi female 28 20000
yuanhao female 28 10000

要求:

从文件中取出每一条记录放入列表中,
列表的每个元素都是{'name':'egon','sex':'male','age':18,'salary':3000}的形式

2 根据1得到的列表,取出薪资最高的人的信息

3 根据1得到的列表,取出最年轻的人的信息
4 根据1得到的列表,将每个人的信息中的名字映射成首字母大写的形式
5 根据1得到的列表,过滤掉名字以a开头的人的信息
6 使用递归打印斐波那契数列(前两个数的和得到第三个数,如:0 1 1 2 3 4 7...)

7 一个嵌套很多层的列表,如l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]],用递归取出所有的值

#1with open('db.txt') as f:    items=(line.split() for line in f)    info=[{
'name':name,'sex':sex,'age':age,'salary':salary} \ for name,sex,age,salary in items]print(info)#2print(max(info,key=lambda dic:dic['salary']))#3print(min(info,key=lambda dic:dic['age']))# 4info_new=map(lambda item:{
'name':item['name'].capitalize(), 'sex':item['sex'], 'age':item['age'], 'salary':item['salary']},info)print(list(info_new))#5g=filter(lambda item:item['name'].startswith('a'),info)print(list(g))#6#非递归def fib(n): a,b=0,1 while a < n: print(a,end=' ') a,b=b,a+b print()fib(10)#递归def fib(a,b,stop): if a > stop: return print(a,end=' ') fib(b,a+b,stop)fib(0,1,10)#7l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]]def get(seq): for item in seq: if type(item) is list: get(item) else: print(item)get(l)
View Code

 

 

 

转载于:https://www.cnblogs.com/zhanglin123/p/9268846.html

你可能感兴趣的文章
监控工具之---Prometheus 安装详解(三)
查看>>
不错的MVC文章
查看>>
网络管理相关函数
查看>>
IOS Google语音识别更新啦!!!
查看>>
20190422 T-SQL 触发器
查看>>
[置顶] Linux终端中使用上一命令减少键盘输入
查看>>
poj1422_有向图最小路径覆盖数
查看>>
BootScrap
查看>>
[大牛翻译系列]Hadoop(16)MapReduce 性能调优:优化数据序列化
查看>>
WEB_点击一百万次
查看>>
CodeForces - 878A Short Program(位运算)
查看>>
路冉的JavaScript学习笔记-2015年1月23日
查看>>
Mysql出现(10061)错误提示的暴力解决办法
查看>>
2018-2019-2 网络对抗技术 20165202 Exp3 免杀原理与实践
查看>>
NPM慢怎么办 - nrm切换资源镜像
查看>>
CoreData 从入门到精通(四)并发操作
查看>>
Swift - UIView的常用属性和常用方法总结
查看>>
Swift - 异步加载各网站的favicon图标,并在单元格中显示
查看>>
Java编程思想总结笔记Chapter 5
查看>>
[LeetCode]662. Maximum Width of Binary Tree判断树的宽度
查看>>